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Let v be a finite Borel measure on [0, I]. We introduce the notation of the
Durrmeyer-Stieltjes polynomials

Dnv = (n + 1) t (fINk.ndV)Nk.n,
k ~(I (I

where Nkjx) = (~ )xk(l - x)" -k (x E [0, I], k = 1,2, .... , n) are the basic

Bernstein polynomials. We prove that the maximal operator of the sequence (Dn )

is of weak type and the sequence of polynomials (D"v) converges a.e. on [0, I] to
the absolutely continuous part of v. 1994 AcademIC Prcss. Inc.

1. INTRODUCTION

Let n E N be a natural number and denote .9" the (n + I)-dimensional
space of algebraic polynomials of degree at most n. Let LO = LOW, 1]
represent the collection of a.e. finite, Lebesgue measurable functions and
denote by IA I the Lebesgue measure of a set A ~ [0,1]. The space
L 1 = LI[O, I) is considered as a real Banach space of real-valued functions
with the usual norm

11!lll:= 1'1!(t)ldt,
o

J. L. Durrmeyer [7] introduced the following modification of the classi­
cal Bernstein polynomial operators,

Dnf:= (n + 1) k~O (fNk,,,(t)!(t) dt )Nk,,, (n EN),

(1 )

* Research supported by the National Scientific Research Foundation (Grant 384/324/
0413). E-mail address:SZILI@.LUDENS.ELTE.HU.

40
0021-9045/94 $6.00
Copyright © 1994 by Academic Press. Inc.
All rights of reproduction in any form reserved.



where
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(x E [0,1], k = 0,1, ... , n)

denotes the basic Bernstein polynomials of degree n. In [7] Durrmeyer
proved that for every continuous function f E C[O, 1] the sequence of
polynomials Dnf (n E N) uniformly tends to f on the interval [0, 1].

Further interesting properties of the sequence of these operators were
studied by M. M. Derrienic [5], Z. Ciesielski [3], Z. Ditzian and K. Ivanov
[6], and other authors (see [8-10, 12, 13, 17]). For the case of a.e.
convergence M. M. Derrienic [5] proved the folIowing result.

THEOREM A. For every function fELl the sequence of polynomials
(DnJ)nEN converges a.e. to f on [0,1].

In this paper we shalI prove a generalization of this result to finite Borel
measures.

Let 1M] denote the collection of finite Borel measures on [0, 1] and IIvll
the total variation of the measure v E M. The maximal function of a
measure v E 1M] at a point x E [0, 1] is defined by

IV(I) I
v*(x) := suP -

II
-
I
-,

where the supremum is taken over all intervals I contained in [0, 1] and
containing x.

It is known (see [14]) that for every measure v E M the folIowing
inequality holds

5
I{x E [0,1]: v*(x) > y} I ~ -llvll

y

for alI y > 0, i.e., the maximal operator

(2)

Mv := v*

(A c [0,1]).

is of weak type.
Recall that if v E 1M] is an absolutely continuous measure, then its

Radon-Nikodym derivative (which we shalI denote by dv/dm) with re­
spect to the Lebesgue measure m exists and

dv
v(A) = ~dm

It is also known that for every finite Borel measure v there exists a
uniquely determined absolutely continuous measure VI and a singular
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measure A such that

L. SZILI

V=Vf+A.

Such a measure vf is called the absolutely continuous part of v E M.

2. MAIN RESULTS

We introduce the notation of the so-called Durrmeyer-Stieltjes opera­
tors, as

Another generalization of the polynomials (1) have been introduced and
investigated by Z. Ciesielski [4] and H. Berens and y. Xu [1, 2].

The maximal operator of the sequence of the Durrmeyer-Stieltjes
operators (3) will be defined by

(D*v)(x) := sup IDnv(x)1
nEI\,)

(x E [0,1]; v EM).

The aim of this note is to prove the following statements.

THEOREM 1. For every measure v E M the following inequality is satis­
fied

(D*v)(x) ~ (12 + l)v*(x) (xE(O,l)).

THEOREM 2. Let v E M be a finite Borel measure on the interval [0, 1].
Denote f as the Radon-Nikodym derivative of the absolutely continuous part
of v. Then the sequence of the Durrmeyer-Stieltjes polynomials (3) satisfies
the limit relation

a.e. on [0,1].

Remark. If the measure v E M is absolutely continuous and its
Radon-Nikodym derivative is f then Dnv = DJ (n E M, so from Theo­
rem 2 we have Theorem A.

3. AUXILIARIES

In order to prove the theorems we need some preliminary results and
lemmas. We will suppose a function of bounded variation on to, 1] is
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continuous from the left at all points of (0,1] and continuous from the
right at the point 1 in the sequel.

It is known that for every measure v E M there exists a function Fp :

[0, 1] ~ IR of bounded variation on [0,1] such that

(4)

for all functions g integrable with respect to the measure v (the space of
all these functions is denoted by L~). The function Fp with the above
property is not uniquely determined. Indeed for every number c E IR the
function F = Fp + c satisfies the equality

(5)

for all g E L~.

It is also true that if the functions Fp , F satisfy (4) and (5) then there
exists a real number c E IR such that F = Fp + c.

For the proof of the theorems we need some other representation of the
Durrmeyer-Stieltjes polynomials.

LEMMA 1. For every measure v E M the Durrmeyer-Stieltjes polynomi­
als (3) can be written in the form

D"v(x) = D,,(dF)(x) = (n + 1) I: (j'Nk,,, dF)Nk,,,(X)
k~O 0

= (n + 1)[F(l)x" -F(O)(l-x)")

n~ I Nk + I, " + I ( x) ( k + 1 )
- n(n + 1) '-- x - --

k=O x(l - x) n + 1

X ((Nk,,,_l(t)F(t) dt) (6)

for all x E (0,1) and n E N, where F: [0, 1] ~ IR is an arbitrary function of
bounded variation with property (5).

Proof Let v E M be a fixed measure and denote F as the function of
bounded variation with the property (5).

Using integration by parts with respect to the Lebesgue-Stieltjes inte­
gral we have for every function F: [0,1] -. IR of bounded variation

[ 1 [I 1
Nk,,, dF + FdNk,,, = [Nk,,,F]o

o 0
(k=O,l, ... ,n;nEN).
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Since the basic polynomials Nk,n (k = 0,1, ... , n; n E N) are absolutely
continuous functions thus

fFdNk.n = fF(t)N~,n(t) dt
o 0

(k = 0, 1, ... , n; n E N).

Using the above identities and the relations Nk,nCO) = 00 , k and Nk,n(1) =

Ok, n we conclude that

n

= (n + 1) L [Nk,nFl~Nk,r,(x)
k~O

-(n + 1) t (fF(t)N~,"(t) dt)Nk,n(X)
k=O 0

= (n + 1)[F(1)x" - F(O)(1 -x(]

-(n + 1) k~O (fF(t)Nk,n(t) dt )Nk,II(X)' (7)

From the definition of the basic Bernstein polynomials it follows that

N~,n(t) = -n(1 - t(-L, N~,n(t) = nt n- I,

Nk,n(t) = n[Nk-1,n_l(t) - Nk,n-l(t)], if 1 ~ k ~ n - 1,

thus

(n + 1) k~O (fNk,n(t)F(t) dt )Nk,n(X)

= (n + 1)[(faIN~,n(t)F(t) dt )No,n<X)

+ (faIN~.n(t)F(t) dt )Nn,n(X)]

+ n(n + 1) nEI (f[Nk-l,n-,(t) - Nk,n_,(t)]F(t) dt)Nk.n(X)
k~ I 0

= n(n + 1) nEI (fNk,n-l(t)F(t) dt)[Nk+I,n(X) - Nk,II(X)],
k~O 0
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An easy caJculation shows that for every x E (0, 1)

Nk+l,n+I(X) (x _ ~)Nk+l,n(X) - Nk,n(x) = ,
x(1-x) n+l

from which we obtain that

45

(n + 1) kto ({N~.n<t)F(t) dt )Nk,n(X)

n - I Nk+ 1 n + I( X) ( k + 1 ) (11 )=n(n+l)I: ' x--- Nk,n_l(t)F(t)dt,
k~O xCI-x) n+l 9

Combining this with (7) we get the representation (6). I

Let us consider the polynomials

n-I
Am,n(x):= I: Nk+1,n+l(X) fNk,n-l(t)(t - x)m dt

k~O 0

(x E IR; m,n EN). (8)

LEMMA 2. Let n ~ 2 be an arbitrary integer. Then the following esti­
mates hold:

xCI-x)
AZ,n(x) ~ 2 n(n + 2) (x E [0,1]), (9)

xCI-x)
A 4 ,n(x) ~ 9 n(n + 2)(n + 3) (x E [0,1]). (10)

Proof The polynomials defined by (8) are the same as those intro­
duced by Z. Ditzian and K. Ivanov [6, p. 86] disregarding a factor n. As
their polynomials obey a recursion formula [6, p. 87], the same holds for
our polynomials:

x(I - x)[A'm,n(x) - mA m-l,n(x)]

-en + m + I)Am+l,n(x) - m(I - 2x)Am,n(x)

+ mx(I -x)Am_l,n(x) (x E IR; m = I, ... ,n). (11)

640/79/1-4



46 L. SZILI

Using the well-known relations (see [15))

n+I

L Nk,n+l(X) = 1,
k={)

n+l

L kNk n+l(x) = (n + l)x (x E [0,1], n EN),
k~{)

(k=O,l, ... ,n-l;n EN\{O,I}),

n+l( k)L x - --1 Nk,n+l(X) = 0
k~{) n +

f
l 1
Nk n_l(t) dt = -() , n

1 k + 1

1tNk n - I( t) dt = ( 1)() ., n n +

(X E [0,1], n E N),

(12)

(k=O,l, ... ,n-l;n EN\{O,l})

we have

1 - (1 - x)n+l - xn+1

AO,n(x) = -------­
n

and

(1 - x)x n +1 - x(1 - X(+l
Al n(x) = ---------, n

(x E [0,1]; n E N)

(x E [0,1]; n EN). (13)

Specializing (11) for the case m = 1 simple calculations show

x( 1 - x) n
A 2 n(x) = {2 - (n + 2)[x(1 -x) + (1 -x)xnJ}

, n(n + 2)

(x E [0,1]; n EN), (14)

from which we get the inequality (9).
In order to prove (0), first we calculate A 3, n(x) from 00, (2), and

(13):

X(I-X){ 2 n 1-2X}
A 3,n(x) = n (I-x) x

n
-x

2
(I-x) - 6(n + 2)(n + 3) .

( 15)
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Finally putting m = 3 into (11) and using (13), (14) we get

12x(l-x) [( 10) 2 ]A x = 1 - -- x 1 -x +--4,n() n(n+2)(n+3) n+4 ( ) n+4

x(1 - x) [ n 3 ]
- x 3(1 - x) + (1 - x) X

n
,

n

from which inequality (0) follows. I

4. PROOFS

47

Proof of Theorem 1. Let x E (0, 1) be a fixed point. For the measure
v E M there exists a uniquely determined function F of bounded varia­
tions such that

F(x) = 0

for all g E L~.

Using Lemma 1 for this function F we get that

(Dnv)(x) = (n + 1)[F(I)xn -F(O)(I-x(]

n~1 Nk + 1 n+l(x) ( k + 1)
- n(n + 1) J.... ' x - --

k=O x(1 - x) n + 1

X (fNk,n-l(t)F(t) dt)

=An(x) - Bn(x). (16)

For the first term on the right-hand side of (6) we have

IAAx)1 = (n + 1)IF(I)xn - F(O)(1 -x(1

= (n + 1)I(F(I) -F(x))xnl-I(F(O) -F(x))(I-x)nl

~ v*(x)(n + 1)[x(1 -x( + (l-x)x n].

From the well-known identity

n+ I ( )1: n + 1 x k (1 - X)"+I-k = 1
k=O k
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we have
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(n + 1)[x(l-x( + (1 -x)xn] ~ 1

thus we obtain that

(x E [0,1]; n EN),

(x E [O,I];n EN). (17)

Let us consider the second term on the right-hand side of (16). Since
F(x) = °thus

I
n-INk+1n+1(X)( k+1)11

IBn(x)l=n(n+l) k~O X(I'-x) x- n+1 oNk,n-l(t)

X[F(t) -F(X)]dtl

n(n+l)n-l I k+11
~ v*(x) x(1 -x) kI;:oNk+L.n+I(X) X - n + I

xllNk n_l(t)lt -xldt.o .

Applying the Cauchy inequality and the fundamental identity

n + I ( k)2L Nk,n+I(X) X - --
k~O n + 1

we conclude that

x( 1 - x)

n + 1
(n E N)

n(n + 1)
IBn(x)1 ~ v*(x) x(1 -x)

X[ni:.1Nk+l,n+I(X)(X _ _k_+_1 )2]1/2
k=O n + 1

X [~~~Nk+l,n+l(x)(fNk.n-l(t)lt - xl dtn
min + I

< v*(x)--,====-
= Vx(l-x)

X [:t:NU'.H,(X)(fa'N, .•-,(t)lt - xl dlIT'
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Using the Cauchy inequality with respect to the integrals and also (12) we
have

In(n + 1)
IBn ( X) I ~ V* (X) J

x( 1 - x)

[
n-l ]1/2

X L Nk+1,n+l(X) [Nk,n-I(t)(t - X)2 dt
k=O 0

Finally, by (9) we can write

(x E (0,1); n EN). (18)

The statement of Theorem 1 immediately follows from (16)-(18). I
From Theorem 1 and (2) immediately follows

COROLLARY 1.

(i) For every measure v E M we have

(ij) The maximal operator D*: M ---+ LO is of weak type, i.e., the
inequality

5(/2 + 1)
I{XE[O,1]:(D*v)(x»y}I~· Ilvll

y

holds for all y > 0 and all v E M.

Now we show that the result of M. M. Derrienic (see Theorem A)
follows from Theorem 1, too.

COROLLARY 2. Let v E M be an absolutely continuous measure. Denote
f as the Radon-Nikodym derivative of v. Then

a.e. on [0, 1]. ( 19)

Proof Since for the absolutely continuous measure v we have Dnv =

Dn f, it is enough to prove that

for all fELl.

a.e. on [0,1] (20)
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Let m be a fixed natural number and consider the polynomial f(x) = x m

(x E [0,1]). M. M. Derrienic proved (see [5, Proposition 1.2]) that for
m;';i; n

(n+l)! ;'(m)m! n!
Dnf(x) = '-' - x r

(n+m+l)!r=O r r! (n-r)! .
(21)

It is easy to see that the main coefficient of (21) tends to 1 if n ~ 00 and
the other coefficients of (21) tend to °if n ~ 00. This means that the limit
relation (20) is satisfied for all polynomials.

Thus the statement follows from Corollary 1 by standard argument (see
[16, p. 81]). I

Proof of Theorem 2. Let v E M be a finite Borel measure on the
interval [0,1]. Consider the Lebesgue decomposition of v,

where vf is an absolutely continuous measure and A is a singular measure.
Since Dnv = Dnvf + DnA thus according to Corollary 2 for the proof of

Theorem 2 it remains to establish that for every singular measure A

a.e. on [0,1]. (22)

Let us consider a singular function F: [0, 1] ~ IR with the property

f dF = f dv,
A A

From Lemma 1 we have

A~[O,I].

Dn(dF)(x) = (n + 1)[F(I)xn - F(O)(1 -x(]

n-IN (x)
- n(n + 1) r: k+I,n+1

k=O x(1 - x)

( k+1)11X X - -- Nk n_l(t)F(t) dt.
n + 1 0 .

Using the identity

n+l ( k)r: Nk,n+l(X) X - -- = °
k=O n + 1

(x E [0, 1]; n E N)
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Dn(dF)(x) = (n + I)[F(I) - F(x)]x n

+(n + I)[F(x) - F(O)](1 - X(

n~1 Nk+l,n+l(X) ( k + 1)
- n(n + 1) '-' x - --

k~O x(1 - x) n + 1

X l'Nk,n-l(t)[F(t) - F(x)] dt. (23)
o

It is obvious that for every x E (0,1) the first two terms of the right-hand
side of (23) tend to 0 if n ~ 00.

Since F is a singular function, for almost every x E (0, 1) we have

. F(t) - F(x)
11m = O.
I--->x t - x

Fix a point x with the above property and E > O. Then there exists a
number 5 > 0 such that

IF(t) - F(x)1 < Elt - xl (24)

for It - x I < 5, t E (0, 1).
The remainder of the right-hand side of (23) can be written in the form

n-IN (X)( k+l)
C ( ) . ( 1)" k+l,n+1- x·= n n + '-' x - --

n k~O x(l-x) n+I

X fNk,n-l(t)[F(t) - F(x)] dt

n~1 Nk+l.n+1(X) ( k + 1)
= n(n + 1) '-' x - --

k=O xCI-x) n+I

Xl Nk,n-I(t)[F(t) - F(x)] dt
II-xl<o

n~1 Nk+1,n+I(X) ( k + 1 )
+n(n+l)L, ( x---

k~O X 1 - x) n + 1

Xl Nk,n_l(t)[F(t) - F(x)] dt
II-xl>o

(25)
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Similarly to the proof of (18), we can conclude from (24) that

n(n+1)n-l I k+l!1
1111 ~E (1 _ ) L Nk+l.n+I(X) X - --11 Nk,n-l(t)lt -xldt

x x k ~() n + 0

~ fiE. (26)

For the term 12 we obtain

2Mn(n+1)n-1 1 k+11
112 1 ~ 82 x(l-x) kZ:ONk+l,n+I(X) X - n + 1

[
I 2

X Nk,n_l(t)lt -xl dt,
o

where IF(OI ~ M (t E (0,1)). Using the method of the proof of (I8) we
can conclude that

Thus from Lemma 2 we get

IBM vn+T
112 1 ~ 7 n

From (25)-(27) it follows that for large enough n E N we have

(27)

a.e. [0, I]

which proves (22) and this completes the proof of the theorem. I
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