On A.E. Convergence of Durrmeyer – Stieltjes Polynomials*

L. Szili

Department of Numerical Analysis, Eötvös L. University, H-1088 Budapest, Múzeum krt. 6-8., Hungary

Communicated by Zeev Ditzian

Received October 7, 1992; accepted in revised form September 24, 1993

Let ν be a finite Borel measure on [0, 1]. We introduce the notation of the Durrmeyer-Stieltjes polynomials

$$D_n \nu = (n+1) \sum_{k=0}^n \left(\int_0^1 N_{k,n} \, d\nu \right) N_{k,n},$$

where $N_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}$ $(x \in [0,1], k = 1, 2, ..., n)$ are the basic Bernstein polynomials. We prove that the maximal operator of the sequence (D_n) is of weak type and the sequence of polynomials $(D_n \nu)$ converges a.e. on [0, 1] to the absolutely continuous part of ν . (* 1994 Academic Press, Inc.

1. INTRODUCTION

Let $n \in \mathbb{N}$ be a natural number and denote \mathscr{P}_n the (n + 1)-dimensional space of algebraic polynomials of degree at most n. Let $L^0 = L^0[0, 1]$ represent the collection of a.e. finite, Lebesgue measurable functions and denote by $|\mathcal{A}|$ the Lebesgue measure of a set $\mathcal{A} \subseteq [0, 1]$. The space $L^1 = L^1[0, 1]$ is considered as a real Banach space of real-valued functions with the usual norm

$$||f||_1 := \int_0^1 |f(t)| dt, \quad f \in L^1.$$

J. L. Durrmeyer [7] introduced the following modification of the classical Bernstein polynomial operators,

$$D_n: L^1 \to \mathscr{P}_n, \qquad D_n f := (n+1) \sum_{k=0}^n \left(\int_0^1 N_{k,n}(t) f(t) \, dt \right) N_{k,n} \, (n \in \mathbb{N}),$$
(1)

*Research supported by the National Scientific Research Foundation (Grant 384/324/0413). E-mail address: SZILI@LUDENS.ELTE.HU.

0021-9045/94 \$6.00 Copyright © 1994 by Academic Press, Inc. All rights of reproduction in any form reserved. 40

where

$$N_{k,n}(x) = \binom{n}{k} x^{k} (1-x)^{n-k} \qquad (x \in [0,1], k = 0, 1, \dots, n)$$

denotes the basic Bernstein polynomials of degree *n*. In [7] Durrmeyer proved that for every continuous function $f \in C[0, 1]$ the sequence of polynomials $D_n f$ ($n \in \mathbb{N}$) uniformly tends to f on the interval [0, 1].

Further interesting properties of the sequence of these operators were studied by M. M. Derrienic [5], Z. Ciesielski [3], Z. Ditzian and K. Ivanov [6], and other authors (see [8–10, 12, 13, 17]). For the case of a.e. convergence M. M. Derrienic [5] proved the following result.

THEOREM A. For every function $f \in L^1$ the sequence of polynomials $(D_n f)_{n \in \mathbb{N}}$ converges a.e. to f on [0, 1].

In this paper we shall prove a generalization of this result to finite Borel measures.

Let \mathbb{M} denote the collection of finite Borel measures on [0, 1] and $||\nu||$ the total variation of the measure $\nu \in \mathbb{M}$. The maximal function of a measure $\nu \in \mathbb{M}$ at a point $x \in [0, 1]$ is defined by

$$\nu^*(x) \coloneqq \sup \frac{|\nu(I)|}{|I|},$$

where the supremum is taken over all intervals I contained in [0, 1] and containing x.

It is known (see [14]) that for every measure $\nu \in \mathbb{M}$ the following inequality holds

$$|\{x \in [0,1]: \nu^*(x) > y\}| \leq \frac{5}{y} ||\nu||$$
(2)

for all y > 0, i.e., the maximal operator

$$M: \mathbb{M} \to L^0, \qquad M\nu \coloneqq \nu^*$$

is of weak type.

Recall that if $\nu \in M$ is an absolutely continuous measure, then its Radon-Nikodym derivative (which we shall denote by $d\nu/dm$) with respect to the Lebesgue measure *m* exists and

$$\nu(A) = \int_A \frac{d\nu}{dm} \qquad (A \subset [0,1]).$$

It is also known that for every finite Borel measure ν there exists a uniquely determined absolutely continuous measure ν_f and a singular

measure λ such that

$$\nu = \nu_f + \lambda.$$

Such a measure ν_f is called the absolutely continuous part of $\nu \in \mathbb{M}$.

2. MAIN RESULTS

We introduce the notation of the so-called Durrmeyer-Stieltjes operators, as

$$D_n: \mathbb{M} \to \mathscr{P}_n, \qquad D_n \nu := (n+1) \sum_{k=0}^n \left(\int_0^1 N_{k,n} \, d\nu \right) N_{k,n} \, (n \in \mathbb{N}). \tag{3}$$

Another generalization of the polynomials (1) have been introduced and investigated by Z. Ciesielski [4] and H. Berens and Y. Xu [1, 2].

The maximal operator of the sequence of the Durrmeyer-Stieltjes operators (3) will be defined by

$$(D^*\nu)(x) := \sup_{n \in \mathbb{N}} |D_n\nu(x)| \quad (x \in [0,1]; \nu \in \mathbb{M}).$$

The aim of this note is to prove the following statements.

THEOREM 1. For every measure $v \in M$ the following inequality is satisfied

$$(D^*\nu)(x) \leq (\sqrt{2} + 1)\nu^*(x) \qquad (x \in (0,1)).$$

THEOREM 2. Let $\nu \in \mathbb{M}$ be a finite Borel measure on the interval [0, 1]. Denote f as the Radon–Nikodym derivative of the absolutely continuous part of ν . Then the sequence of the Durrmeyer–Stieltjes polynomials (3) satisfies the limit relation

$$\lim_{n \to \infty} D_n(\nu) = f \qquad a.e. \ on \ [0,1].$$

Remark. If the measure $\nu \in \mathbb{M}$ is absolutely continuous and its Radon-Nikodym derivative is f then $D_n\nu = D_n f$ ($n \in \mathbb{N}$), so from Theorem 2 we have Theorem A.

3. AUXILIARIES

In order to prove the theorems we need some preliminary results and lemmas. We will suppose a function of bounded variation on [0, 1] is

continuous from the left at all points of (0, 1] and continuous from the right at the point 1 in the sequel.

It is known that for every measure $\nu \in \mathbb{M}$ there exists a function F_{ν} : [0,1] $\rightarrow \mathbb{R}$ of bounded variation on [0,1] such that

$$\int_{0}^{1} g \, dF_{\nu} = \int_{0}^{1} g \, d\nu \tag{4}$$

for all functions g integrable with respect to the measure ν (the space of all these functions is denoted by L_{ν}^{1}). The function F_{ν} with the above property is not uniquely determined. Indeed for every number $c \in \mathbb{R}$ the function $F = F_{\nu} + c$ satisfies the equality

$$\int_{0}^{1} g \, dF = \int_{0}^{1} g \, d\nu \tag{5}$$

for all $g \in L^1_{\nu}$.

It is also true that if the functions F_{ν} , F satisfy (4) and (5) then there exists a real number $c \in \mathbb{R}$ such that $F = F_{\nu} + c$.

For the proof of the theorems we need some other representation of the Durrmeyer-Stieltjes polynomials.

LEMMA 1. For every measure $\nu \in \mathbb{M}$ the Durrmeyer-Stieltjes polynomials (3) can be written in the form

$$D_{n}\nu(x) = D_{n}(dF)(x) = (n+1)\sum_{k=0}^{n} \left(\int_{0}^{1} N_{k,n} dF\right) N_{k,n}(x)$$

= $(n+1) \left[F(1)x^{n} - F(0)(1-x)^{n}\right]$
 $- n(n+1)\sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1}\right)$
 $\times \left(\int_{0}^{1} N_{k,n-1}(t)F(t) dt\right)$ (6)

for all $x \in (0, 1)$ and $n \in \mathbb{N}$, where $F: [0, 1] \to \mathbb{R}$ is an arbitrary function of bounded variation with property (5).

Proof. Let $\nu \in M$ be a fixed measure and denote F as the function of bounded variation with the property (5).

Using integration by parts with respect to the Lebesgue-Stieltjes integral we have for every function $F: [0, 1] \rightarrow \mathbb{R}$ of bounded variation

$$\int_0^1 N_{k,n} \, dF + \int_0^1 F \, dN_{k,n} = \left[N_{k,n} F \right]_0^1 \qquad (k = 0, 1, \dots, n; n \in \mathbb{N}).$$

Since the basic polynomials $N_{k,n}$ $(k = 0, 1, ..., n; n \in \mathbb{N})$ are absolutely continuous functions thus

$$\int_0^1 F \, dN_{k,n} = \int_0^1 F(t) \, N'_{k,n}(t) \, dt \qquad (k = 0, 1, \dots, n; n \in \mathbb{N}).$$

Using the above identities and the relations $N_{k,n}(0) = \delta_{0,k}$ and $N_{k,n}(1) = \delta_{k,n}$ we conclude that

$$D_{n}(dF)(x) = (n+1) \sum_{k=0}^{n} \left(\int_{0}^{1} N_{k,n} dF \right) N_{k,n}(x)$$

= $(n+1) \sum_{k=0}^{n} [N_{k,n}F]_{0}^{1} N_{k,n}(x)$
 $- (n+1) \sum_{k=0}^{n} \left(\int_{0}^{1} F(t) N_{k,n}'(t) dt \right) N_{k,n}(x)$
= $(n+1) [F(1)x^{n} - F(0)(1-x)^{n}]$
 $- (n+1) \sum_{k=0}^{n} \left(\int_{0}^{1} F(t) N_{k,n}'(t) dt \right) N_{k,n}(x).$ (7)

From the definition of the basic Bernstein polynomials it follows that

$$N'_{0,n}(t) = -n(1-t)^{n-1}, \qquad N'_{n,n}(t) = nt^{n-1},$$

$$N'_{k,n}(t) = n[N_{k-1,n-1}(t) - N_{k,n-1}(t)], \qquad \text{if } 1 \le k \le n-1,$$

thus

$$(n + 1) \sum_{k=0}^{n} \left(\int_{0}^{1} N_{k,n}'(t) F(t) dt \right) N_{k,n}(x)$$

= $(n + 1) \left[\left(\int_{0}^{1} N_{0,n}'(t) F(t) dt \right) N_{0,n}(x) + \left(\int_{0}^{1} N_{n,n}'(t) F(t) dt \right) N_{n,n}(x) \right]$
+ $n(n + 1) \sum_{k=1}^{n-1} \left(\int_{0}^{1} [N_{k-1,n-1}(t) - N_{k,n-1}(t)] F(t) dt \right) N_{k,n}(x)$
= $n(n + 1) \sum_{k=0}^{n-1} \left(\int_{0}^{1} N_{k,n-1}(t) F(t) dt \right) [N_{k+1,n}(x) - N_{k,n}(x)].$

An easy calculation shows that for every $x \in (0, 1)$

$$N_{k+1,n}(x) - N_{k,n}(x) = \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1}\right),$$

from which we obtain that

$$(n+1)\sum_{k=0}^{n} \left(\int_{0}^{1} N_{k,n}'(t) F(t) dt \right) N_{k,n}(x)$$

= $n(n+1)\sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1} \right) \left(\int_{0}^{1} N_{k,n-1}(t) F(t) dt \right).$

Combining this with (7) we get the representation (6).

Let us consider the polynomials

$$A_{m,n}(x) := \sum_{k=0}^{n-1} N_{k+1,n+1}(x) \int_0^1 N_{k,n-1}(t) (t-x)^m dt$$
$$(x \in \mathbb{R}; m, n \in \mathbb{N}).$$
(8)

LEMMA 2. Let $n \ge 2$ be an arbitrary integer. Then the following estimates hold:

$$A_{2,n}(x) \leq 2\frac{x(1-x)}{n(n+2)} \qquad (x \in [0,1]), \tag{9}$$

$$A_{4,n}(x) \leq 9 \frac{x(1-x)}{n(n+2)(n+3)} \qquad (x \in [0,1]). \tag{10}$$

Proof. The polynomials defined by (8) are the same as those introduced by Z. Ditzian and K. Ivanov [6, p. 86] disregarding a factor n. As their polynomials obey a recursion formula [6, p. 87], the same holds for our polynomials:

$$\begin{aligned} x(1-x) \Big[A'_{m,n}(x) - mA_{m-1,n}(x) \Big] \\ &= -(n+m+1)A_{m+1,n}(x) - m(1-2x)A_{m,n}(x) \\ &+ mx(1-x)A_{m-1,n}(x) \qquad (x \in \mathbb{R}; m = 1, \dots, n). \end{aligned}$$

640/79/1-4

Using the well-known relations (see [15])

$$\sum_{k=0}^{n+1} N_{k,n+1}(x) = 1,$$

$$\sum_{k=0}^{n+1} k N_{k,n+1}(x) = (n+1)x \ (x \in [0,1], n \in \mathbb{N}),$$

$$\sum_{k=0}^{n+1} \left(x - \frac{k}{n+1}\right) N_{k,n+1}(x) = 0 \qquad (x \in [0,1], n \in \mathbb{N}),$$

$$\int_{0}^{1} N_{k,n-1}(t) \ dt = \frac{1}{n} \qquad (k = 0, 1, \dots, n-1; n \in \mathbb{N} \setminus \{0,1\}),$$

$$\int_{0}^{1} t N_{k,n-1}(t) \ dt = \frac{k+1}{n(n+1)} \qquad (12)$$

$$(k = 0, 1, \dots, n-1; n \in \mathbb{N} \setminus \{0,1\})$$

we have

$$A_{0,n}(x) = \frac{1 - (1 - x)^{n+1} - x^{n+1}}{n} \qquad (x \in [0, 1]; n \in \mathbb{N})$$

and

$$A_{1,n}(x) = \frac{(1-x)x^{n+1} - x(1-x)^{n+1}}{n} \qquad (x \in [0,1]; n \in \mathbb{N}).$$
(13)

Specializing (11) for the case m = 1 simple calculations show

$$A_{2,n}(x) = \frac{x(1-x)}{n(n+2)} \Big\{ 2 - (n+2) \Big[x(1-x)^n + (1-x)x^n \Big] \Big\}$$
$$(x \in [0,1]; n \in \mathbb{N}), \quad (14)$$

from which we get the inequality (9).

In order to prove (10), first we calculate $A_{3,n}(x)$ from (11), (12), and (13):

$$A_{3,n}(x) = \frac{x(1-x)}{n} \left\{ (1-x)^2 x^n - x^2 (1-x)^n - 6 \frac{1-2x}{(n+2)(n+3)} \right\}.$$
(15)

Finally putting m = 3 into (11) and using (13), (14) we get

$$A_{4,n}(x) = \frac{12x(1-x)}{n(n+2)(n+3)} \left[\left(1 - \frac{10}{n+4} \right) x(1-x) + \frac{2}{n+4} \right] \\ - \frac{x(1-x)}{n} \left[x^3(1-x)^n + (1-x)^3 x^n \right],$$

from which inequality (10) follows.

4. PROOFS

Proof of Theorem 1. Let $x \in (0, 1)$ be a fixed point. For the measure $\nu \in \mathbb{M}$ there exists a uniquely determined function F of bounded variations such that

$$\int_0^1 g \, dF = \int_0^1 g \, d\nu, \qquad F(x) = 0$$

for all $g \in L^1_{\nu}$.

Using Lemma 1 for this function F we get that

$$(D_n\nu)(x) = (n+1) \left[F(1)x^n - F(0)(1-x)^n \right] - n(n+1) \sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1} \right) \times \left(\int_0^1 N_{k,n-1}(t) F(t) dt \right) = A_n(x) - B_n(x).$$
(16)

For the first term on the right-hand side of (16) we have

$$|A_n(x)| = (n+1)|F(1)x^n - F(0)(1-x)^n|$$

= $(n+1)|(F(1) - F(x))x^n| - |(F(0) - F(x))(1-x)^n|$
 $\leq \nu^*(x)(n+1)[x(1-x)^n + (1-x)x^n].$

From the well-known identity

$$\sum_{k=0}^{n+1} \binom{n+1}{k} x^k (1-x)^{n+1-k} = 1$$

we have

$$(n+1)[x(1-x)^n + (1-x)x^n] \leq 1$$
 $(x \in [0,1]; n \in \mathbb{N}),$

thus we obtain that

$$|A_n(x)| \le \nu^*(x) \quad (x \in [0,1]; n \in \mathbb{N}).$$
 (17)

Let us consider the second term on the right-hand side of (16). Since F(x) = 0 thus

$$\begin{aligned} |B_n(x)| &= n(n+1) \left| \sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1} \right) \int_0^1 N_{k,n-1}(t) \right. \\ &\times \left[F(t) - F(x) \right] dt \\ &\leq \nu^*(x) \frac{n(n+1)}{x(1-x)} \sum_{k=0}^{n-1} N_{k+1,n+1}(x) \left| x - \frac{k+1}{n+1} \right| \\ &\times \int_0^1 N_{k,n-1}(t) |t-x| dt. \end{aligned}$$

Applying the Cauchy inequality and the fundamental identity

$$\sum_{k=0}^{n+1} N_{k,n+1}(x) \left(x - \frac{k}{n+1} \right)^2 = \frac{x(1-x)}{n+1} \qquad (n \in \mathbb{N})$$

we conclude that

$$|B_{n}(x)| \leq \nu^{*}(x) \frac{n(n+1)}{x(1-x)} \\ \times \left[\sum_{k=0}^{n-1} N_{k+1,n+1}(x) \left(x - \frac{k+1}{n+1} \right)^{2} \right]^{1/2} \\ \times \left[\sum_{k=0}^{n-1} N_{k+1,n+1}(x) \left(\int_{0}^{1} N_{k,n-1}(t) |t-x| dt \right)^{2} \right] \\ \leq \nu^{*}(x) \frac{n\sqrt{n+1}}{\sqrt{x(1-x)}} \\ \times \left[\sum_{k=0}^{n-1} N_{k+1,n+1}(x) \left(\int_{0}^{1} N_{k,n-1}(t) |t-x| dt \right)^{2} \right]^{1/2}.$$

Using the Cauchy inequality with respect to the integrals and also (12) we have

$$|B_n(x)| \leq \nu^*(x) \frac{\sqrt{n(n+1)}}{\sqrt{x(1-x)}} \\ \times \left[\sum_{k=0}^{n-1} N_{k+1,n+1}(x) \int_0^1 N_{k,n-1}(t) (t-x)^2 dt\right]^{1/2}.$$

Finally, by (9) we can write

$$|B_n(x)| \le \sqrt{2} \nu^*(x) \quad (x \in (0,1); n \in \mathbb{N}).$$
 (18)

The statement of Theorem 1 immediately follows from (16)–(18).

From Theorem 1 and (2) immediately follows

COROLLARY 1.

(i) For every measure $\nu \in \mathbb{M}$ we have

$$D^*\nu \in L^0$$
.

(ii) The maximal operator $D^*: \mathbb{M} \to L^0$ is of weak type, i.e., the inequality

$$|\{x \in [0,1]: (D^*\nu)(x) > y\}| \leq \frac{5(\sqrt{2}+1)}{y} ||\nu||$$

holds for all y > 0 and all $\nu \in M$.

Now we show that the result of M. M. Derrienic (see Theorem A) follows from Theorem 1, too.

COROLLARY 2. Let $v \in M$ be an absolutely continuous measure. Denote f as the Radon-Nikodym derivative of v. Then

$$\lim_{n \to \infty} D_n \nu = f \qquad a.e. \ on \ [0,1]. \tag{19}$$

Proof. Since for the absolutely continuous measure ν we have $D_n\nu = D_n f$, it is enough to prove that

$$\lim_{n \to \infty} D_n f = f \qquad \text{a.e. on } [0,1] \tag{20}$$

for all $f \in L^1$.

Let *m* be a fixed natural number and consider the polynomial $f(x) = x^m$ $(x \in [0, 1])$. M. M. Derrienic proved (see [5, Proposition I.2]) that for $m \leq n$

$$D_n f(x) = \frac{(n+1)!}{(n+m+1)!} \sum_{r=0}^m \binom{m}{r} \frac{m!}{r!} \frac{n!}{(n-r)!} x^r.$$
(21)

It is easy to see that the main coefficient of (21) tends to 1 if $n \to \infty$ and the other coefficients of (21) tend to 0 if $n \to \infty$. This means that the limit relation (20) is satisfied for all polynomials.

Thus the statement follows from Corollary 1 by standard argument (see [16, p. 81]).

Proof of Theorem 2. Let $\nu \in \mathbb{M}$ be a finite Borel measure on the interval [0, 1]. Consider the Lebesgue decomposition of ν ,

$$\nu = \nu_f + \lambda,$$

where ν_f is an absolutely continuous measure and λ is a singular measure.

Since $D_n \nu = D_n \nu_f + D_n \lambda$ thus according to Corollary 2 for the proof of Theorem 2 it remains to establish that for every singular measure λ

$$\lim_{n \to \infty} D_n \lambda = 0 \qquad \text{a.e. on } [0,1].$$
(22)

Let us consider a singular function $F: [0, 1] \rightarrow \mathbb{R}$ with the property

$$\int_{A} dF = \int_{A} d\nu, \qquad A \subseteq [0,1].$$

From Lemma 1 we have

$$D_n(dF)(x) = (n+1) \left[F(1)x^n - F(0)(1-x)^n \right]$$

- $n(n+1) \sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)}$
 $\times \left(x - \frac{k+1}{n+1} \right) \int_0^1 N_{k,n-1}(t) F(t) dt$

Using the identity

$$\sum_{k=0}^{n+1} N_{k,n+1}(x) \left(x - \frac{k}{n+1} \right) = 0 \qquad (x \in [0,1]; n \in \mathbb{N})$$

we obtain that

$$D_{n}(dF)(x) = (n+1)[F(1) - F(x)]x^{n} + (n+1)[F(x) - F(0)](1-x)^{n} - n(n+1)\sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1}\right) \times \int_{0}^{1} N_{k,n-1}(t)[F(t) - F(x)] dt.$$
(23)

It is obvious that for every $x \in (0, 1)$ the first two terms of the right-hand side of (23) tend to 0 if $n \to \infty$.

Since F is a singular function, for almost every $x \in (0, 1)$ we have

$$\lim_{t\to x}\frac{F(t)-F(x)}{t-x}=0.$$

Fix a point x with the above property and $\varepsilon > 0$. Then there exists a number $\delta > 0$ such that

$$|F(t) - F(x)| < \varepsilon |t - x|$$
(24)

for $|t - x| < \delta$, $t \in (0, 1)$.

The remainder of the right-hand side of (23) can be written in the form

$$-C_{n}(x) \coloneqq n(n+1) \sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1} \right)$$

$$\times \int_{0}^{1} N_{k,n-1}(t) [F(t) - F(x)] dt$$

$$= n(n+1) \sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1} \right)$$

$$\times \int_{|t-x|<\delta} N_{k,n-1}(t) [F(t) - F(x)] dt$$

$$+ n(n+1) \sum_{k=0}^{n-1} \frac{N_{k+1,n+1}(x)}{x(1-x)} \left(x - \frac{k+1}{n+1} \right)$$

$$\times \int_{|t-x|>\delta} N_{k,n-1}(t) [F(t) - F(x)] dt$$

$$=: I_{1} + I_{2}. \qquad (25)$$

Similarly to the proof of (18), we can conclude from (24) that

$$|I_{1}| \leq \varepsilon \frac{n(n+1)}{x(1-x)} \sum_{k=0}^{n-1} N_{k+1,n+1}(x) \left| x - \frac{k+1}{n+1} \right| \int_{0}^{1} N_{k,n-1}(t) |t-x| dt$$

$$\leq \sqrt{2} \varepsilon.$$
(26)

For the term I_2 we obtain

$$|I_{2}| \leq \frac{2M}{\delta^{2}} \frac{n(n+1)}{x(1-x)} \sum_{k=0}^{n-1} N_{k+1,n+1}(x) \left| x - \frac{k+1}{n+1} \right| \\ \times \int_{0}^{1} N_{k,n-1}(t) |t-x|^{2} dt,$$

where $|F(t)| \leq M$ ($t \in (0, 1)$). Using the method of the proof of (18) we can conclude that

$$|I_2| \leq \frac{2M}{\delta^2} \sqrt{\frac{n(n+1)}{x(1-x)}} \left(\sum_{k=0}^{n-1} N_{k+1,n+1}(x) \int_0^1 N_{k,n-1}(t) (t-x)^4 dt \right)^{1/2}.$$

Thus from Lemma 2 we get

$$|I_2| \leq \frac{18M}{\delta^2} \frac{\sqrt{n+1}}{n}.$$
 (27)

From (25)–(27) it follows that for large enough $n \in \mathbb{N}$ we have

 $|C_n(x)| \leq \varepsilon$ a.e. [0,1]

which proves (22) and this completes the proof of the theorem.

ACKNOWLEDGMENT

The author expresses his thanks to Professor F. Schipp for pointing out this topic and for his encouragement during the work.

References

- 1. H. BERENS AND Y. XU, On Bernstein-Durrmeyer polynomials with Jacobi weights, *in* "Approximation Theory and Functional Analysis—Conference" (C. K. Chiu, Ed.), pp. 25-46, Academic Press, Boston, 1991.
- 2. H. BERENS AND Y. XU, On Bernstein-Durrmeyer polynomials with Jacobi-weights: The Cases p = 1 and $p = \infty$, Israel Math. Conf. Proc. 4 (1991), 51-62.

- 3. Z. CIESIELSKI, Approximation by polynomials and extension of Parseval's identity for Legendre polynomials to the L_p case, Acta Sci. Math. (Szeged) 48 (1985), 65-70.
- Z. CIESIELSKI, Numerical integration with weights of convex functions of algebraic polynomials, *Colloq. Math.* 50/51 (1990), 671-679.
- M. M. DERRIENIC, Sur l'approximation de fonctions intégrables sur [0, 1] par des polynômes de Bernstein modifies, J. Approx. Theory 31 (1981), 325-343.
- Z. DITZIAN AND K. IVANOV, Bernstein-type operators and their derivatives, J. Approx. Theory, 56 (1989), 72-90.
- J. L. DURRMEYER, "Une Formule d'Inversion de la Transformée de Laplace: Applications à la Théorie des Moments," Thèse de 3ème cycle, Fac. des Sciences de l'Université de Paris, 1967.
- H. H. GONSKA AND J. MEIER, A bibliography on approximation of functions by Bernstein type operators (1955-1982), in "Approximation Theory IV, Proc. Int. Sympos. College Station, 1983" (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), pp. 739-785, Academic Press, New York, 1983.
- H. H. GONSKA AND J. M. GONSKA, A bibliography on approximation of functions by Bernstein type operators (Supplement 1986), *in* "Approximation Theory V, Proc. Int. Sympos. on Approx. Theory, 1986" (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), pp. 621-654, Academic Press, New York, 1986.
- H. H. GONSKA AND X. L. ZHOU, A global inverse theorem on simultaneous approximation by Bernstein-Durrmeyer operators, J. Approx. Theory 67 (1991), 284-302.
- 11. S. Guo, On the rate of convergence of Durrmeyer operator for functions of bounded variation, J. Approx. Theory 51 (1987), 183-192.
- M. HEILMANN, L_p-saturation of some modified Bernstein operators, J. Approx. Theory 54 (1988), 260-273.
- M. HEILMAN AND M. W. MÜLLER, Direct and converse result on simultaneous approximation by the method of Bernstein-Durrmeyer operators, *in* "Algorithms for Approximation, II," pp. 107-116, Chapman & Hall, London, 1990.
- 14. B. S. KAŠIN AND A. A. SAAKJAN, "Orthogonal Series," Izdat. Nauka, Moscow, 1984.
- 15. G. G. LORENTZ, "Bernstein Polynomials," University of Toronto Press, Toronto, 1953.
- F. SCHIPP, W. R. WADE, AND P. SIMON (with assistance from J. Pál), "Walsh Series," Akadémiai Kiado, Budapest, 1990.
- S. P. SINGH AND G. PRASAD, On approximation by modified Bernstein polynomials, *Publ. Inst. Math. (Beograd)* (N.S.) 37, No. 51 (1985), 81-84.
- B. WOOD, Uniform approximation by linear combinations of Bernstein-type polynomials, J. Approx. Theory 41 (1984), 51-55.